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Plastic pollution is a pervasive and growing problem. To estimate the effectiveness of interventions to
reduce plastic pollution, we modeled stocks and flows of municipal solid waste and four sources of
microplastics through the global plastic system for five scenarios between 2016 and 2040. Implementing
all feasible interventions reduced plastic pollution by 40% from 2016 rates and 78% relative to ‘business as
usual’ in 2040. Even with immediate and concerted action, 710 million metric tons of plastic waste
cumulatively entered aquatic and terrestrial ecosystems. To avoid a massive build-up of plastic in the
environment, coordinated global action is urgently needed to reduce plastic consumption, increase rates of
reuse, waste collection and recycling, expand safe disposal systems and accelerate innovation in the plastic

value chain.

Plastic pollution is globally ubiquitous. It is found through-
out the oceans, in lakes and rivers, in soils and sediments, in
the atmosphere, and in animal biomass. This proliferation
has been driven by rapid growth in plastic production and
use combined with linear economic models that ignore the
externalities of waste (1, 2). A sharp rise in single-use plastic
consumption and an expanding ‘throw-away’ culture (7) have
exacerbated the problem. Waste management systems do not
have sufficient capacity at the global level to safely dispose of
or recycle waste plastic (3, 4), resulting in an inevitable in-
crease in plastic pollution into the environment. Previous
studies estimated approximately 8 million metric tons (Mt)
of macroplastic (5) and 1.5 Mt of primary microplastic (6) en-
ter the ocean annually. Comparable estimates for terrestrial
plastic pollution have yet to be quantified. If plastic produc-
tion and waste generation continue to grow at current rates,
the annual mass of mismanaged waste has been projected to
more than double by 2050 (I, 2) and the cumulative mass of
ocean plastic could increase by an order of magnitude from
2010 levels by 2025 (5). Despite the magnitude of these flows,
the efficacy and economic costs of solutions proposed to solve
the plastic waste problem - the uncontrolled release of plastic
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waste into the environment resulting from ineffective man-
agement - remains unknown.

A growing body of evidence points to a broad range of det-
rimental effects of plastic pollution. Nearly 700 marine spe-
cies and over 50 freshwater species are known to have
ingested or become entangled in macroplastic (7, 8) and there
is growing evidence that plastic is ingested by a wide range
of terrestrial organisms (9). Plastic pollution impacts many
aspects of human well-being: affecting the aesthetics of
beaches (10), blocking drainage and wastewater engineering
systems (1) and providing a breeding ground for disease vec-
tors (10, 12). The lower-bound estimate of the economic costs
of plastic pollution on fishing, tourism and shipping have
been estimated at USD 13 billion annually (13). Although
harmful effects of microplastic (here defined as plastics < 5
mm) have not been consistently demonstrated, ingestion has
been documented across trophic levels and at all depths of
the ocean in individual organisms and species assemblages
(8, 14) and in terrestrial organisms (15). Microplastics are also
increasingly found in the human food system though their
impacts on human health are difficult to assert and require
further research (16, 17). Plastic production, collection and
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disposal are also major sources of greenhouse gas (GHG)
emissions (I8).

Cost-effective solutions to managing plastic waste vary
considerably across geographies and social settings (3), and a
variety of solutions to the plastic pollution problem have
been proposed at local, national and regional levels (19, 20).
Some proposed interventions focus on post-consumption
management, requiring considerable growth in investment
and capacity of waste management solutions (21, 22). Other
interventions prioritize reducing plastic through replace-
ment with alternative products, reuse, and the development
of new delivery models (23). Individual countries have estab-
lished bans or levies on select plastic products, with a partic-
ular focus on banning single-use carrier bags and microbeads
in cosmetic products (24, 25). The European Union recently
adopted a directive on single-use plastics (26) while the Basel
Convention was amended to regulate the international trade
of plastic waste (27). The scientific community and non-gov-
ernmental organizations are also working to identify solu-
tions (21, 28). Despite these efforts, a global evidence-based
strategy that includes practical and measurable interventions
aimed at reducing plastic pollution does not yet exist.

Modeling approach

Designing an effective global strategy requires an under-
standing of the mitigation potential of different solutions and
the magnitude of global effort needed to appreciably reduce
plastic pollution. To estimate mitigation potential under dif-
ferent intervention scenarios, we developed the Plastics-to-
Ocean (P,O) model. P,O is a data-driven coupled ordinary dif-
ferential equation (ODE) model that calculates the flow of
plastics through representative systems. We used the model
to characterize key stocks and flows for land-based sources of
plastic pollution across the entire value chain for municipal
solid waste (MSW) macroplastics (figs. S1 and S2) and four
sources of primary microplastics (i.e., those entering the en-
vironment as microplastics) [supplementary materials (SM)
section 15 and figs. S3 to S6). Crucially, it provides estimates
of plastic waste input into the environment. Costs are calcu-
lated as a function of modeled plastic flows, and changes in
costs due to production scale and technological advancement
are accounted for through learning curves and returns to
scale (SM section 16.1).

Projected growth in demand for plastic was calculated us-
ing country-level population size (29), per capita macro-
plastic MSW (30, 31) and microplastic-generating product use
and loss rates. Per capita waste generation and waste man-
agement processes (e.g., collection costs, collection and pro-
cessing rates, recycling recovery value) and rates of primary
microplastic generation vary by geography and plastic cate-
gory/source (6, 32-34). To account for these differences, the
global population was split across eight geographic
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archetypes based on World Bank income categories (low in-
come, lower- and upper- middle income and high income);
and United Nations urban-rural classifications (29). Popula-
tions were further differentiated by their distance to water (<
1 km or > 1 km) to estimate their relative flows of plastic pol-
lution to terrestrial versus aquatic (lakes, rivers and marine
environments) systems. To account for different waste man-
agement pathways (35) and movement rates of waste in the
environment (35), MSW plastics were differentiated into
three material categories: rigid monomaterial, flexible mon-
omaterial and multi-material/multi-layer. Four microplastic
sources were modeled: synthetic textiles, tires, plastic pellets
and personal care products.

Five scenarios were developed to estimate reductions in
plastic pollution over the period 2016-2040. Scenarios were
defined by four high-level classes of interventions (reduce,
substitute, recycle, dispose) and eight system interventions:
(i) reducing plastic quantity in the system, (ii) substituting
plastics with alternative materials and delivery systems, (iii)
implementing design for recycling, (iv) increasing collection
capacity, (v) scaling-up sorting and mechanical recycling ca-
pacity, (vi) scaling-up chemical conversion capacity, (vii) re-
ducing post-collection environmental leakage, and (viii)
reducing trade in plastic waste (table S7). Scenarios modeled
include: (i) ‘Business as Usual’ (BAU), (ii) ‘Collect and Dis-
pose’, (iii) ‘Recycling’, (iv) ‘Reduce and Substitute’, and (v) an
integrated ‘System Change’ scenario that implemented the
entire suite of interventions (tables S8 and S57).

At all relevant geographical scales, waste production and
handling data are notoriously difficult to obtain. Many model
inputs have a high degree of uncertainty which was propa-
gated using Monte Carlo sampling. Data inputs and assigned
uncertainties are described in supplemental material (SM
section 5.6). In the absence of datasets with which to formally
validate the model, sensitivity analyses were conducted to
quantify the influence of individual model inputs and to iden-
tify key drivers of plastic pollution. Model outputs from the
BAU scenario were also compared against results from other
global studies (2, 5, 36).

Business as usual

The BAU scenario highlights the scale of the plastic pollu-
tion problem and provides a baseline from which to compare
alternative intervention strategies (Fig. 1). At a global scale
from 2016-2040, the annual rate of macro- and microplastic
entering aquatic systems from land increased 2.6-fold (Fig. 1C
and Table 1). Over the same period, the rate of plastic pollu-
tion retained in terrestrial systems increased 2.8-fold (Fig. 1D
and Table 1).

When current commitments to reducing plastic pollution
were modeled assuming full implementation (SM section
9.1), annual plastic pollution rates into aquatic and terrestrial
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environments decreased by only 6.6% [95% Confidence Inter-
val: 5.4, 7.9] (37) and 7.7% [5.2, 10] by 2040, respectively (Fig.
1A). This result confirms that current commitments coupled
with appropriate policies can reduce plastic waste input into
the environment but also shows that considerable additional
effort will be needed to match the unprecedented scale of
projected environmental plastic pollution.

Plastic pollution rates were found to be particularly sen-
sitive to total plastic mass, collection rates, and the ratio of
managed to mismanaged waste. For example, a 1t reduction
in plastic MSW mass (i.e., through reduce and substitute in-
terventions) decreased aquatic plastic pollution by an aver-
age of 0.088 t in low and middle-income archetypes and an
average of 0.0050 t in high-income archetypes. Across all ar-
chetypes, an equivalent increase in the collection of plastic
waste (through formal and informal sectors) resulted in an
average 0.18 t decrease in aquatic plastic pollution, while a
similar decrease in post-collection mismanaged waste pro-
duced an average 0.10 t decrease in aquatic plastic pollution.

Scenarios to reduce plastic pollution

The focus of plastic pollution reduction strategies can be
broadly partitioned into upstream (pre-consumption, e.g., re-
ducing demand) and downstream (post-consumption, e.g.,
collection and recycling) measures. To parameterize the de-
velopment of waste management and recycling solutions in
the ‘Collect and Dispose’, ‘Recycling’, and ‘System Change’
scenarios, we estimated maximum foreseen growth and im-
plementation rates based on historical trends and expert
panel consensus assessment (SM section 1). In a limited num-
ber of cases where data were not available in the published
literature, we conducted interviews with industry experts or
purchased proprietary data from industry market research
databases. Compared to BAU, the annual combined terres-
trial and aquatic plastic pollution rates were reduced by 57%
in 2040 [45, 69] under the ‘Collect and Dispose’ scenario, and
by 45% [35, 54] under the ‘Recycling’ scenario (Fig. 1, A and
B).

Strategies focused on upstream (pre-consumption) solu-
tions were represented by the ‘Reduce and Substitute’ sce-
nario. We developed a feasibility assessment framework to
model the potential development of upstream solutions
aimed at reducing the volume of plastics used and disposed
of into the waste stream (SM section 9). Fifteen major plastic
applications were assessed against four criteria for technol-
ogy readiness and unintended consequences related to
health/food safety, consumer acceptance (e.g., convenience,
climate change impacts) and affordability (tables S21 and
S22). The feasibility of substitution with alternative material
was assessed against the potential for scaling to meaningful
levels within the modeling period. Paper, coated paper and
compostable materials met these criteria. Under the ‘Reduce
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and Substitute’ scenario, annual combined terrestrial and
aquatic plastic pollution in 2040 decreased 59% [47, 72] rela-
tive to BAU while annual plastic production decreased by
47% [44, 49]. Consequently, plastic production in 2040 under
the ‘Reduce and Substitute’ scenario (220 Mt/y [200, 240)]
was similar to production in 2016 (210 Mt/y [200, 230]).

Neither pre- nor post-consumption interventions alone
are sufficient to address the plastic problem. Combining the
maximum foreseen application of pre- and post-consumption
solutions represents the most aggressive possible solution
given current technology: the ‘System Change’ scenario. In
this scenario, annual combined terrestrial and aquatic plastic
pollution decreased by 78% [62, 94] relative to BAU in 2040,
but only by 40% [31, 48] relative to 2016 pollution rates (Fig.
1, A and B, and Table 1). In 2040, the annual rate of land-
based sources of plastic entering aquatic and terrestrial sys-
tems decreased by 82% [68, 95] and 76% [55, 97] relative to
BAU, respectively (Fig. 1, C and D, and Table 1).

Under the ‘System Change’ scenario in 2040, a substantial
reduction in mismanaged and disposed waste was achieved
through increases in the proportion of plastic demand re-
duced, substituted by alternative materials and recycled (Fig.
2A, and Table 1). These changes to the plastic system resulted
in 11% [10, 12] less virgin plastic being produced in 2040 un-
der the ‘System Change’ scenario than was produced in 2016,
and 55% [51, 58] less than in 2040 under BAU. Moreover, this
reduction was driven by increases in recycled plastic feed-
stock, which have lower life-cycle GHG emissions (I8). Taken
together, the ‘System Change’ scenario moves toward achiev-
ing a circular economy in which resources are conserved,
waste generation is minimized (38) and GHG emissions re-
duced.

The present value of cumulative, global waste manage-
ment operations from 2016 to 2040 was approximated to as-
sess the relative cost of each scenario (Fig. 3). Among
scenarios, costs varied by less than 20% relative to BAU, were
lowest under the ‘System Change’ and ‘Recycling’ scenarios,
and highest for the ‘Collect and Dispose’ scenario. Costs un-
der the ‘System Change’ scenario were 18% [14, 23] lower
than BAU, with increased waste management costs offset by
costs savings from reduced plastic production and revenues
from recyclate sales, which increased due to product redesign
and improved economics of recycling (SM section 16.8).
These costs represent only waste management costs, which
are generally borne by taxpayers. Corporate engagement,
through improved product design, alternative material devel-
opment and new business models will be necessary to achieve
pollution levels observed in the ‘System Change’ scenario.
This engagement will likely require a significant shift in pri-
vate sector investment.
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Our results underline the urgency with which extensive
interventions are needed. Despite a considerable reduction in
annual plastic production and an increase in the proportion
of MSW that is effectively managed under the best-case ‘Sys-
tem Change’ scenario, a substantial amount of plastic waste
remained mismanaged (i.e., not collected and sorted, recycled
or safely disposed) between 2016 and 2040. When implemen-
tation of interventions begins in 2020, the cumulative mass
of plastic pollution added between 2016 and 2040 amounts
to 250 Mt [190, 310] in aquatic systems (Fig. 4A) and 460 Mt
[300, 640] in terrestrial systems (Fig. 4B), approximately 1
and 2 times the total annual plastic production in 2016, re-
spectively. If implementation of interventions is delayed by
only 5 years, an additional 300 Mt of mismanaged plastic
waste is expected to accumulate in the environment.

Outlook by plastic category

The complex composition of multi-material plastics limits
the technical feasibility of sorting and reprocessing (39), de-
creasing the economic attractiveness of recycling. Accord-
ingly, the annual production of these plastics decreased by 19
Mt [18, 20] from 2016 to 2040 under the ‘System Change’ sce-
nario, with a shift of similar magnitude to flexible mono-ma-
terial plastic production (20 Mt/y [19, 21]).

Due to the relative ease of collection and sorting, recycling
was dominated by rigid plastics in all archetypes and across
all scenarios (Fig. 4C). Under the ‘System Change’ scenario in
2040, rigid plastics represented 62% [58, 67] of the annual
mass of recycling, with a sizeable component of flexible
mono-material plastic (33% [28, 37]) (Fig. 5A). In comparison,
only 5.0% [4.2, 5.4] of recycled material was derived from
multi-material/multilayer waste plastic (Fig. 5A).

The diversity of polymer types, surface contamination and
low density of post-consumer flexible monomaterial limit
their capacity for recycling, particularly in geographies where
waste collection services are provided by the informal sector.
At a global scale, the absolute and relative contribution of
flexible monomaterial plastics to environmental pollution
grew between 2016 and 2040, from 45% [35, 56] to 56% [40,
73] in aquatic environments and from 37% [18, 52] to 48%
[22, 67] in terrestrial environments (Fig. 5, B and C). Accord-
ingly, finding an economically viable solution to effectively
manage flexible plastics will be essential for solving the plas-
tic pollution problem.

Similarly, the proportion of total plastic pollution origi-
nating from microplastics in the ‘System Change’ scenario
grew from 11% [6.5, 18] to 23% [11, 42] in aquatic systems and
from 16% [8.2, 27] to 31% [18, 51] in terrestrial systems over
the modeled period (Fig. 5, B and C). Technologies to capture
microplastics, which often rely on stormwater and
wastewater management and treatment, are rarely economi-
cally feasible - even in wealthy regions - due to associated
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infrastructure costs. This technological challenge is particu-
larly acute for tire particles, which contributed 93% [83, 96]
of global microplastic pollution by mass in 2040.

Difficulties to overcome

Scaling collection to all households at a global level is a
monumental task that would require connecting over a mil-
lion additional households to MSW collection services per
week from 2020 to 2040; the majority of these unconnected
households are in middle-income countries. The effort to in-
crease household waste collection will therefore require a key
role for ‘waste pickers’ (the informal collection and recycling
sector (40)), who link the service chain (MSW collection) to
the value chain (recycling) in low- and middle-income set-
tings. Globally, this sector was responsible for 58% [55, 64] of
post-consumer plastic waste collected for recycling in 2016.
To incentivize the collection of low-value plastics (flexible
monomaterial and multimaterial / multilayer plastic) by the
informal sector, the profitability of recycling these materials
would need to rise to create demand for their collection. Ac-
cordingly, investments in collection infrastructure must be
coordinated with improved governance around collection,
sorting and safe management of generated waste (41).

Mismanaged plastic waste (i.e., in dumpsites, openly
burned or released into aquatic or terrestrial environments)
is associated with a range of risks to human and ecological
health (42). Substantial quantities of such waste are likely to
continue to be emitted into the environment or openly
burned through time. Under the ‘System Change’ scenario, in
addition to aquatic and terrestrial pollution, approximately
250 Mt [130, 380] of waste plastic would accumulate in open
dumpsites from 2016 to 2040 and remain a potential source
of environmental pollution (Fig. 4D). Many communities in
emerging economies with inadequate waste management
services and infrastructure burn waste residentially or in
open dumpsites without emissions controls. Open burning
transfers the pollution burden to air, water and land via the
generation of GHGs, particulate matter (including micro-
plastic particles) and harmful chemicals such as dioxins and
other persistent organic pollutants (43, 44). Despite its hu-
man health and environmental consequences, open burning
was the single largest component of mismanaged plastic
waste under all scenarios, with 1200 Mt [94.0, 1400] of plastic
burned in the ‘System Change’ scenario between 2016 and
2040 (Fig. 4D). It therefore remains a stubborn pollution and
social justice problem in need of an effective solution.

Though not strictly mismanaged, the net export of waste
from high-income to upper- and lower-middle income coun-
tries grew from 2.7 Mt/y [2.4, 4.7] in 2016 to 3.8 Mt/y [0.7, 7.2]
in 2040 under BAU. Though a comparatively small amount,
these exports have the potential to increase the fraction of
mismanaged plastic waste, as receiving countries often have
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insufficient capacity to manage their own waste. Conse-
quently, importing waste for recycling can have the unin-
tended consequence of displacing these developing
economies’ capacity to recycle their domestic waste (45).
Although efforts to measure the amount of plastic pollu-
tion entering rivers and the ocean have increased in recent
years (46-48), key data gaps remain. To better estimate the
effects of consumer, corporate and policy actions on solving
the plastic pollution problem, additional empirical data are
needed throughout the plastics system - particularly in de-
veloping economies. Moreover, a more complete accounting
of the benefits, costs and externalities of plastic use is needed
to design policies which align social and financial incentives
and minimize plastic pollution. These data deficiencies cur-
rently prevent application of the model at finer geographical
scales and limit the granularity of the system representation.
In particular, data from the informal sector of the global
waste management system are scarce, as are data which shed
light on the importance of post-collection MSW mismanage-
ment. Additional quantitative data are also needed to better
understand key sources, rates and pathways for microplastic
pollution and for maritime sources of plastic pollution.

Addressing the plastic pollution problem

Our analysis indicates that urgent and coordinated action
combining pre- and post-consumption solutions could re-
verse the increasing trend of environmental plastic pollution.
While no silver bullet exists, 78% of the plastic pollution prob-
lem can be solved by 2040 using current knowledge and tech-
nologies and at a lower net cost for waste management
systems compared to BAU. However, with long degradation
times, even a 78% reduction from BAU pollution rates results
in a massive accumulation of plastic waste in the environ-
ment. Moreover, even if this system change is achieved, plas-
tic production and unsound waste management activities
will continue to emit large quantities of GHGs. Further inno-
vation in resource-efficient and low-emission business mod-
els, reuse and refill systems, sustainable substitute materials,
waste management technologies and effective government
policies are needed. Such innovation could be financed by re-
directing existing and future investments in virgin plastic in-
frastructure. Substantial commitments to improving the
global plastic system are required from businesses, govern-
ments and the international community to solve the ecologi-
cal, social and economic problems of plastic pollution and
achieve near-zero input of plastics into the environment.
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Fig. 1. Annual rates of plastic
pollution entering the environment
estimated from 300 Monte Carlo
simulations. (A) Time series of
plastic pollution entering aquatic and
terrestrial ecosystems (Mt/y + 95%
Cl) by scenario, 2016 - 2040.
Scenarios:  ‘Business as Usual'
(BAU), ‘Collect and Dispose”
scenario (CDS), ‘Recycling’ scenario
(RES), ‘Reduce and Substitute’
scenario (RSS), and ‘System
Change' scenario (SCS). Plastic
pollution rates for all scenarios
between 2016 and 2020 are
identical. The black point estimate in
2040 represents the annual rate of
plastic pollution assuming global
commitments to reduce plastic use
and increase recycling announced
before June 2019 are implemented
prior to 2040. A time series for this
scenario is not presented because
timelines for implementation are
unknown. (B) Kernel density
estimates for plastic pollution (Mt) in
2040 by scenario. Boxplots of plastic
pollution entering (C) aquatic and
(D) terrestrial ecosystems by
scenario for beginning, middle, and
end years of scenario
implementation.
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Fig. 2. Fate for all municipal solid
waste plastic, 2016-2040, under
the ‘System Change’ scenario
(SCS). (A) Annual mass of plastic
(Mt/y) for each of five end-of-life
fates. (B) Mass of plastic utility
(Mt/y) addressed per modeled
intervention in 2040, following 20
years of SCS implementation,
organized by end of life fate. NDM
= new delivery model. P2F
chemical = plastic to fuel chemical
conversion. P2P chemical = plastic
to plastic chemical conversion.
Incineration ER = Incineration with
energy recovery. Aquatic poll. =
plastic pollution into aquatic
systems. Terrestrial poll. = plastic
pollution into terrestrial systems.

Fig. 3. Present value costs for the management (i.e., collection, sorting,
recycling, and disposal) of plastic municipal solid waste by scenario,
2016 -2040. Costs (Billion 2018 USD + 95% CI) are calculated assuming
3.5% discount rate and are net of revenues associated with the sale of
recycled plastic feedstock and electricity generated from plastic
incineration with energy recovery. Scenarios: Business as Usual’ (BAU),
‘Collect and Dispose” scenario (CDS), ‘Recycling’ scenario (RES), ‘Reduce
and Substitute’ scenario (RSS), and ‘System Change' scenario (SCS).
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Fig. 5. Fate of plastic municipal solid waste (MSW) by plastic type
under the ‘System Change’ Scenario (SCS). (A) Proportion of MSW
(+/- 95% CI) produced in 2040 absorbed by each of three recycling
solutions and the dispose and mismanaged end-of-life categories. Even
under SCS, few effective solutions are implemented to manage primary
microplastics. The proportion of plastic pollution (+/-95% CI) entering
(B) global aquatic and (C) terrestrial systems by plastic type, 2016 —
2040.
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Table 1. Plastic mass; percent of total plastic demand under different end of life fates for year 2016 and for year 2040 under
the ‘Business as Usual’ (BAU) and ‘System Change’ scenarios (SCS); and percent change in plastic mass under different end
of life fates for SCS in 2040 relative to 2016 and BAU in 2040.

Plastic mass (Mt/y) Fate as % plastic demand SCS 2040% change
End of life fate 95% CI 95% CI 95% ClI
2016 BAU 2040 SCS2040 2016  BAU 2040 SCS2040 2016 BAU 2040
Reduction 0 0 130 0 0 31 — —
0,0 0,0 110,150 0,0 0,0 28, 33
L 0 0 71 0 0 17
Substitution 0,0 0,0 62,81 0,0 0,0 15,18 -
Recvelin 31 55 84 14 13 20 170 54
yeling 26,32 46,63 75, 93 12,15 11,15 18,21 140,200 46, 61
Disposal 97 140 100 44 32 24 35 26
P 83,97 120,150 89,110 39,45 28,33 22,26 33,38 -24,-28
. 91 240 44 42 56 10 51 81
Mismanaged 84,100 220,260 40,49 41,47 53,59 94,12  -48,-54 76,87
Open burm* 49 130 23 54 56 53 53 82
P 40,60 110,160 18,29 42,63 44,65 41, 65 45,61 —70,-95
N 12 25 3.2 13 11 73 74 87
P 74,21 14,41 1550 8222 5917 3311  -49,-99 -54 120
Aquatic sollutions L1 29 53 12 12 12 52 82
quatic p 90,14 23,37 38,70 98,14 9815 90,15  -43,-60 68, -95
Terrestrial pollution* 18 52 12 20 22 28 33 76
P 13,25 34,70 78,18 13,27 14,29 18,39 —23,-42 55,97

*Components of the mismanaged end of life fate. These categories sum to the total for mismanaged waste.
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